5. Énoncés des exercices

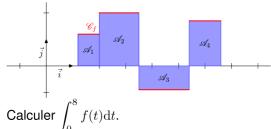
Exercice 14.1 Soit f une fonction définie sur $\mathbb R$ par f(x)=x+4.

Tracer la représentation graphique de f. Calculer $\int_0^3 f(t) dt$.

On rappelle que l'aire d'un trapèze peut se calculer avec la formule : $\mathscr{A} = \text{hauteur} \times \frac{\text{petite base+grande base}}{2}$

Tracer la représentation graphique de f. Calculer $\int_{-5}^{5} f(t) dt$.

Voici la représentation graphique de f:



Exercice 14.4 Calculer les intégrales suivantes

1.
$$\int_0^{\pi} (\cos 2t - \sin t) dt$$

2.
$$\int_0^{-\frac{\pi}{2}} (\sin(3u) - 4\cos(u)) du$$

$$3. \int_0^{\pi} (\cos 3x) \mathrm{d}x$$

4.
$$\int_{-1}^{0} e^{-2x+1} dx$$

Exercice 14.5 Calculer les intégrales suivantes

1.
$$\int_0^1 \frac{2x-3}{5} dx$$

2.
$$\int_0^1 e^{3x} dx$$

3.
$$\int_0^1 \sqrt{e^x} dx$$

Exercice 14.6 1. Calculer
$$\int_{-1}^{\frac{1}{2}} (2t-1) dt$$
 et $\int_{\frac{1}{2}}^{3} (-2t+1) dt$

143

2. En déduire la valeur de
$$\int_{-1}^3 |-2t+1| \mathrm{d}t$$

Exercice 14.7 Partie A: Démonstration.

Soient u et v deux fonctions dérivables sur un intervalle [a;b].

- 1. Démontrer que pour tout $x \in [a;b]$, u(x)v'(x) = (u(x)v(x))' u'(x)v(x)
- 2. En déduire que $\int_a^b u(x)v'(x)\mathrm{d}x = [u(x)v(x)]_a^b \int_a^b u'(x)v(x)\mathrm{d}x$

Partie B: Applications.

Les questions de cette partie sont indépendantes entre elles.

- 1. Calculer $\int_0^1 x e^x dx$
- 2. Calculer $\int_0^{\frac{\pi}{2}} x \cos(2x) dx$
- 3. Reprendre deux fois de suite la méthode de la partie A pour calculer $I=\int_0^1 x^2 e^x dx$ et $J=\int_{-1}^0 t^2 e^{\frac{t}{2}} dt$
- 4. Reprendre la méthode de la partie A pour calculer $\int_0^x (t+1)e^t \mathrm{d}t$; en déduire la primitive de la fonction $x\mapsto (x+1)e^x$ qui vaut 1 en 0.

Exercice 14.8 Calculer les intégrales suivantes :

1.
$$\int_{-2}^{3} (x+1)e^x dx$$

$$2. \int_{1}^{e} x^{2} ln(x) dx$$

3.
$$\int_{1}^{9} x \sqrt{x} dx$$

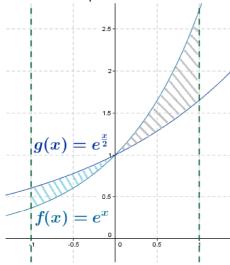
Exercice 14.9 Pour n entier on pose $I_n = \int_0^1 x^n e^x dx$

- 1. Calculer $I_0 = \int_0^1 e^x dx$
- 2. En utilisant la méthode d'intégration par parties, montrer que pour tout n de \mathbb{N} , $I_{n+1}=e-(n+1)I_n$
- 3. En déduire I_1 , I_2 et I_3 .

Exercice 14.10 Déterminer la valeur moyenne de f sur I dans chacun des cas suivants :

- 1. $f(x) = \cos(2x), I = [0; \pi]$
- **2.** $f(x) = 2x^2 + x 2$, I = [-1; 1]

Exercice 14.11 Soient f et g deux fonctions définies sur [-1;1] par $f(x)=e^x$ et $g(x)=e^{\frac{x}{2}}$. Soient \mathscr{C}_f et \mathscr{C}_g les courbes représentatives des fonctions f et g dans un repère orthogonale $(O;\vec{i};\vec{j})$.



- 1. Soit \mathscr{A}_1 l'aire de la partie du plan déterminée par \mathscr{C}_f et \mathscr{C}_g et les droites d'équations x=-1 et x=0. Calculer \mathscr{A}_1 .
- 2. Soit \mathscr{A}_2 l'aire de la partie du plan déterminée par \mathscr{C}_f et \mathscr{C}_g et les droites d'équations x=0 et x=1. Calculer \mathscr{A}_2 .

Exercice 14.12 Le but de l'exercice est de donner un encadrement du nombre I défini par : $\int_0^1 \frac{x^2 e^x}{1+x} dx$. Soit f la fonction définie sur [0;1] par $f(x) = \frac{e^x}{1+x}$.

- 1. Étudier les variations de la fonction f sur [0;1].
- 2. On pose, pour tout entier naturel n, $S_n = \sum_{k=0}^n f(\frac{k}{5})$
 - (a) Justifier que pour tout entier k compris entre 0 et 4, on a : $\frac{1}{5}f(\frac{k}{5}) \leqslant \int_{\frac{k}{5}}^{\frac{k+1}{5}} \frac{e^x}{1+x} \mathrm{d}x \leqslant \frac{1}{5}f(\frac{k+1}{5})$ Interpréter graphiquement à l'aide de rectangles les inégalités précédentes.
 - (b) En déduire que : $\frac{1}{5}S_4 \leqslant \int_0^1 \frac{e^x}{1+x} dx \leqslant \frac{1}{5}(S_5-1)$
 - (c) Donner des valeurs approchées à 10^{-4} près de S_4 et S_5 . En déduire l'encadrement : $1,091 \leqslant \int_0^1 \frac{e^x}{1+x} \mathrm{d}x \leqslant 1,164$
- 3. (a) Démontrer que pour tout réel x de [0;1], on a : $\frac{1}{1+x}=1-x+\frac{x^2}{1+x}$
 - (b) Justifier l'égalité $\int_0^1 \frac{e^x}{1+x} \mathrm{d}x = \int_0^1 (1-x)e^x \mathrm{d}x + I$
 - (c) Calculer $\int_0^1 (1-x)e^x dx$
 - (d) En déduire un encadrement de $I=\int_0^1 \frac{x^2 e^x}{1+x} \mathrm{d}x$ d'amplitude strictement inférieure à 10^{-1}

Exercice 14.13 1. Soit f la fonction définie sur \mathbb{R} par : $f(x) = x^2 e^{1-x}$ On désigne par \mathscr{C} sa courbe représentative dans un repère orthonormal $(O; \vec{i}; \vec{j})$ d'unité graphique 2cm.

- (a) Déterminer les limites de f en $-\infty$ et en $+\infty$; quelle conséquence graphique pour f peut-on en tirer?
- (b) Justifier que f est dérivable sur \mathbb{R} . déterminer sa fonction dérivée f'.
- (c) Dresser le tableau de variations de f et tracer la courbe $\mathscr C$
- 2. Soit n un entier naturel . On considère l'intégrale I_n définie par : $I_n = \int_0^1 x^n e^{1-x} \mathrm{d}x$.

On admet que pour tout $n \in \mathbb{N}$, $I_{n+1} = (n+1)I_n - 1$.

- (a) Calculer I_0 , I_1 et I_2
- (b) Donner une interprétation graphique du nombre I_2 . On la fera apparaître sur le graphique de la question 1.c.
- 3. (a) Démontrer que pour tout nombre réel x de [0;1] et pour tout entier naturel n non nul, on a l'inégalité suivante : $x^n \le x^n e^{1-x} \le x^n e$
 - (b) En déduire un encadrement de I_n , puis la limite de I_n quand n tend vers $+\infty$.